Mark Scheme 4725 June 2007

1	EITHER $a=2$ $b=2 \sqrt{3},$ OR $a=2 \quad b=2 \sqrt{3}$	M1 A1 M1 A1 M1 M1 A1 A1	4	Use trig to find an expression for a (or b) Obtain correct answer Attempt to find other value Obtain correct answer a.e.f. (Allow 3.46) State 2 equations for a and b Attempt to solve these equations Obtain correct answers a.e.f. $\mathrm{SR} \pm$ scores A1 only
2	$\begin{aligned} & \left(1^{3}=\right) \frac{1}{4} \times 1^{2} \times 2^{2} \\ & \frac{1}{4} n^{2}(n+1)^{2}+(n+1)^{3} \\ & \frac{1}{4}(n+1)^{2}(n+2)^{2} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { M1(indep) } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	5	Show result true for $n=1$ Add next term to given sum formula Attempt to factorise and simplify Correct expression obtained convincingly Specific statement of induction conclusion
3	$\begin{aligned} & 3 \Sigma r^{2}-3 \Sigma r+\Sigma 1 \\ & 3 \Sigma r^{2}=\frac{1}{2} n(n+1)(2 n+1) \\ & 3 \Sigma r=\frac{3}{2} n(n+1) \\ & \sum_{n^{3}} 1=n \end{aligned}$	M1 A1 A1 A1 M1 A1	6	Consider the sum of three separate terms Correct formula stated Correct formula stated Correct term seen Attempt to simplify Obtain given answer correctly
4	(i) $\frac{1}{2}\left(\begin{array}{cc}5 & -1 \\ -3 & 1\end{array}\right)$ (ii) $\frac{1}{2}\left(\begin{array}{cc} 2 & 0 \\ 23 & -5 \end{array}\right)$	B1 B1 M1 M1 (indep) Alft A1ft	6	Transpose leading diagonal and negate other diagonal or solve sim. eqns. to get $1^{\text {st }}$ column Divide by the determinant or solve $2^{\text {nd }}$ pair to get $2^{\text {nd }}$ column Attempt to use $B^{-1} A^{-1}$ or find B Attempt at matrix multiplication One element correct, a.e.f, All elements correct, a.e.f. $\mathrm{NB} \mathrm{ft} \mathrm{consistent} \mathrm{with} \mathrm{their} \mathrm{(i)}$

5	(i) $\frac{1}{r(r+1)}$ (ii) $1-\frac{1}{n+1}$ (iii) $\begin{gathered} S_{\infty}=1 \\ \frac{1}{n+1} \end{gathered}$	B1 M1 M1 A1 B1ft M1 A1 c.a.o.	7	Show correct process to obtain given result Express terms as differences using (i) Show that terms cancel Obtain correct answer, must be n not any other letter State correct value of sum to infinity Ft their (ii) Use sum to infinity - their (ii) Obtain correct answer a.e.f.
6	(i) (a) $\alpha+\beta+\gamma=3, \alpha \beta+\beta \gamma+\gamma \alpha=2$ (b) $\begin{aligned} & \alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha \\ & \quad=9-4=5 \end{aligned}$ (ii) (a) $\frac{3}{u^{3}}-\frac{9}{u^{2}}+\frac{6}{u}+2=0$ $2 u^{3}+6 u^{2}-9 u+3=0$ (b) $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=-3$	B1 B1 M1 A1 ft M1 A1 M1 A1ft	2	State correct values State or imply the result and use their values Obtain correct answer Use given substitution to obtain an equation Obtain correct answer Required expression is related to new cubic stated or implied -(their "b" / their "a")

\begin{tabular}{|c|c|c|c|c|}
\hline 7 \& \begin{tabular}{l}
(i)
\[
a(a-12)+32
\] \\
(ii) \\
\(\operatorname{det} \mathbf{M}=12\) \\
non-singular \\
(iii) EITHER \\
\(O R\)
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
A1ft \\
B1 \\
M1 \\
A1 \\
M1 \\
A1 \\
A1
\end{tabular} \& 3
2

3
3
8

8 \& | Show correct expansion process |
| :--- |
| Show evaluation of a 2×2 |
| determinant |
| Obtain correct answer a.e.f. |
| Substitute $a=2$ in their determinant |
| Obtain correct answer and state a consistent conclusion |
| $\operatorname{det} \mathrm{M}=0$ so non-unique solutions |
| Attempt to solve and obtain 2 inconsistent equations |
| Deduce that there are no solutions |
| Substitute $a=4$ and attempt to solve Obtain 2 correct inconsistent equations |
| Deduce no solutions |

\hline 8 \& | (i) Circle, centre $(3,0)$, y-axis a tangent at origin Straight line, through $(1,0)$ with + ve slope In $1^{\text {st }}$ quadrant only |
| :--- |
| (ii) Inside circle, below line, above x-axis | \& \[

$$
\begin{array}{|l|}
\hline \text { B1B1 } \\
\text { B1 } \\
\text { B2ft } \\
\hline
\end{array}
$$
\] \& 6

2

8 \& | Sketch showing correct features N.B. treat 2 diagrams asa MR |
| :--- |
| Sketch showing correct region SR: B1ft for any 2 correct features |

\hline
\end{tabular}

9	(i) $\left(\begin{array}{cc}\sqrt{2} & 0 \\ 0 & \sqrt{2}\end{array}\right)$ (ii) Rotation (centre O), 45°, clockwise (iii) (iv) $\binom{0}{0}\binom{1}{1}\binom{1}{-1}\binom{2}{0}$ (v) $\operatorname{det} \mathbf{C}=2$ area of square has been doubled	B1 B1B1B1 B1 M1 A1 B1 B1	1 3 1 1 2 2	Correct matrix Sensible alternatives OK, must be a single transformation Matrix multiplication or combination of transformations For at least two correct images For correct diagram State correct value State correct relation a.e.f.
10	(i) $x^{2}-y^{2}=16 \text { and } x y=15$ $\pm(5+3 i)$ (ii) $\begin{aligned} & z=1 \pm \sqrt{16+30 \mathrm{i}} \\ & 6+3 \mathrm{i}, \quad-4-3 \mathrm{i} \end{aligned}$	M1 A1A1 M1 M1 A1 M1* A1 *M1dep A1 A1ft	5	Attempt to equate real and imaginary parts of $(x+\mathrm{i} y)^{2}$ and $16+30 \mathrm{i}$ Obtain each result Eliminate to obtain a quadratic in x^{2} or y^{2} Solve to obtain $x=(\pm) 5 \text { or } y=(\pm) 3$ Obtain correct answers as complex numbers Use quadratic formula or complete the square Simplify to this stage Use answers from (i) Obtain correct answers

