Mun. My Maths Cloud. com

Mark Scheme 4725 June 2007

		_		
1	EITHER	M1		Use trig to find an expression for a (or b)
	a = 2	A1		Obtain correct answer
		M1		Attempt to find other value
	_	A1		Obtain correct answer a.e.f.
	$b=2\sqrt{3}$,	M1		
				(Allow 3.46)
	OR	M1		State 2 equations for <i>a</i> and <i>b</i>
		A1 A1	4	
				Attempt to solve these equations
	$a=2$ $b=2\sqrt{3}$			Obtain correct answers a.e.f.
	$a z b = z $ $\mathbf{v} $ $\mathbf{v} $		4	SR ± scores A1 only
			•	Sit is secres if only
2	1	B1		Show result true for $n = 1$
2	$(1^3 =)^{\frac{1}{2}} \times 1^2 \times 2^2$	Di		Show result true for $n-1$
	$(1^3 =)\frac{1}{4} \times 1^2 \times 2^2$	3.61		A 11
		M1		Add next term to given sum formula
	$\left(\frac{1}{n} \frac{2}{n(n+1)^2} + (n+1)^3\right)$	M1(indep)		Attempt to factorise and simplify
	$\frac{1}{4}n^2(n+1)^2+(n+1)^3$	A1		Correct expression obtained convincingly
		A1	5	
	$\frac{1}{4}(n+1)^2(n+2)^2$			Specific statement of induction conclusion
	-(n+1)(n+2)			Specific statement of induction conclusion
	4			
			5	
3	$3\Sigma r^2 - 3\Sigma r + \Sigma 1$	M1		Consider the sum of three separate terms
	$3\Sigma r - 3\Sigma r + \Sigma 1$	1111		constant the sain of three separate terms
				Correct formula stated
	2 1	A1		Correct formula stated
	$3\Sigma r^2 = \frac{1}{2}n(n+1)(2n+1)$	AI		
	2			
	3 $(3 + 1)$			
	$3\Sigma r = \frac{3}{2}n(n+1)$	A1		Correct formula stated
	2			
		A1		Correct term seen
	$\sum 1 = n$	M1		Attempt to simplify
	$\sum_{n^3} 1 = n$	A1	6	Obtain given answer correctly
	rı -			South given unower correctly
			6	
4		B1		Transpose leading diagonal and negate other
-	(5 1)	101		
	$(i) \frac{1}{2} (5 - 1)$	D1		diagonal or solve sim. eqns. to get 1 st column
	(i) $\frac{1}{2}$ $\begin{pmatrix} 5 & -1 \\ -3 & 1 \end{pmatrix}$	B1	2	Divide by the determinant or solve 2 nd pair to
				get 2 nd column
	(ii)			
	(11)	M1		Attempt to use B ⁻¹ A ⁻¹ or find B
	(5 -)			Attempt at matrix multiplication
	$\frac{1}{2}$ (2 0)	M1(indep)	4	One element correct, a.e.f,
	$\frac{1}{2} \left(\begin{array}{cc} 2 & 0 \\ 23 & -5 \end{array}\right)$		6	All elements correct, a.e.f.
	(23 3)	A1ft		NB ft consistent with their (i)
		AIII		TAD It consistent with their (1)
		A1ft		
		AIII		

5	(i) $\frac{1}{r(r+1)}$ (ii) $1 - \frac{1}{n+1}$ (iii) $S_{\infty} = 1$ $\frac{1}{n+1}$	B1 M1 M1 A1 B1ft M1 A1 c.a.o.	3 7	Show correct process to obtain given result Express terms as differences using (i) Show that terms cancel Obtain correct answer, must be <i>n</i> not any other letter State correct value of sum to infinity Ft their (ii) Use sum to infinity – their (ii) Obtain correct answer a.e.f.
6	(i) (a) $\alpha + \beta + \gamma = 3, \alpha\beta + \beta\gamma + \gamma\alpha = 2$ (b)	B1 B1	2	State correct values
	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$ $= 9 - 4 = 5$ $\frac{3}{u^{3}} - \frac{9}{u^{2}} + \frac{6}{u} + 2 = 0$ $2u^{3} + 6u^{2} - 9u + 3 = 0$ (b) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = -3$	M1 A1 ft M1 A1 M1 A1 A1 M1 A1ft	2 2 8	State or imply the result and use their values Obtain correct answer Use given substitution to obtain an equation Obtain correct answer Required expression is related to new cubic stated or implied -(their "b" / their "a")

		T		
7	(i)	M1		Show correct expansion process
		M1		Show evaluation of a 2 x 2
	a(a-12)+32	A1	3	determinant
	(ii)			Obtain correct answer a.e.f.
	$\det \mathbf{M} = 12$	M1	2	
	non-singular	A1ft		Substitute $a = 2$ in their determinant
	(iii) EITHER	B1		
		M1		Obtain correct answer and state a
	OR			consistent conclusion
		A1	3	
		M1		$\det M = 0$ so non-unique solutions
		A1		
		A1		Attempt to solve and obtain 2
				inconsistent equations
				Deduce that there are no solutions
				Beddee that there are no solutions
				Substitute $a = 4$ and attempt to solve
				Obtain 2 correct inconsistent
				equations
			8	Deduce no solutions
8	(i) Circle, centre (3, 0),	B1B1		Sketch showing correct features
	y-axis a tangent at origin	B1		N.B. treat 2 diagrams asa MR
	Straight line,	B1		17.D. Hout 2 diagrams asa with
	through (1, 0) with +ve slope	B1		
		B1		
	In 1 st quadrant only	B2ft	_	Sleetala al assissa a samuat maria s
	(ii) Inside circle, below line,	DZII	6	Sketch showing correct region
	above x-axis		2	SR: B1ft for any 2 correct features
			8	

9	(i) $\begin{pmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{2} \end{pmatrix}$	B1	1	Correct matrix
	$\begin{pmatrix} 0 & \sqrt{2} \end{pmatrix}$			
	(ii) Rotation (centre <i>O</i>), 45 ⁰ , clockwise	B1B1B1	3	Sensible alternatives OK, must be a
	(iii)			single transformation
		B1	1	Matrix multiplication or combination of transformations
	$\begin{pmatrix} 0 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$			of transformations
	(iv) $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $\begin{pmatrix} 2 \\ 0 \end{pmatrix}$	M1		
		A1	2	For at least two correct images For correct diagram
				1 or correct diagram
	(v) $\det C = 2$	B1		State correct value
	(v) $\det \mathbf{C} = 2$	B1	2	State correct relation a.e.f.
	area of square has been doubled	DI	2	
			9	
10	(i)	M1		Attempt to equate real and imaginary parts of
	$\left x^2 - y^2 \right = 16$ and $xy = 15$			$(x + iy)^2$ and 16+30i
	$\begin{vmatrix} x - y - 10 & \text{and} & xy - 13 \end{vmatrix}$			
		A1A1		Obtain each result
		M1		Eliminate to obtain a quadratic in x^2 or
				y^2
		M1		Solve to obtain
	$\pm (5+3i)$			$x = (\pm) 5 \text{ or } y = (\pm) 3$
	(ii)	A 1		
		A1	6	Obtain correct answers as complex numbers
	$z = 1 \pm \sqrt{16 + 30i}$			
		M1*		Use quadratic formula or complete the
	6 + 3i, -4 - 3i	A1		square
		*M1dep	5	Simplify to this stage
		A1 A1ft		Use answers from (i) Obtain correct answers
			11	Obtain correct answers